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Manure (salts) can be from 10 to 100 times  
more conductive than typical soil 

Theoretical Basis for using EMI 

Precision Feedlot Surface 

Management Using EMI 



EMI is a powerful tool that can provide  

insight to unseen conditions that  

drives environmental quality  

How can we harness this tool? 



Feedlot Surface Gas Emission 

EMI used to address four questions  
1. What kind of emissions (GHG, Odor, PM)?  

2. How much emissions (i.e. flux rates) ? 

3. Where are the emissions coming from  

 (i.e. spatial distribution)? 

4. What can we do about it (management)? 



 

Specific research objectives were: 

 
1. Assess the accuracy of a RSSD, with a stratified random sampling (SRS) 

procedure for calibrating EMI/soil property regression equations. 
 

2. Test the ability of a regression model estimated using a RSSD for evaluating 
spatial manure accumulation. 
 

3. Evaluate feedlot surface data for any spatial manure accumulation 
structure. 
 

4. Establish a methodology for measuring spatially variable chemical/physical 
constituents associated with manure accumulation on feedlot pen surfaces 

Develop Method using EMI for 
Managing the Feedlot Surface 



ECa Data with 

 GPS Coordinates 

Sampling Design 
1. Stratified Random  

Sampling (SRS) 

2. Response Surface  

 Sampling Design  

(RSSD) 

Sample Locations 

co-located w/EMI 
Cokriging reduces to MLR 

Two Sampling Designs  

Stratified Random Sampling 
(20 sites) 

 

• Rank ECa values from highest to 
lowest. 
 

• Divided rank into 4 equal segments 
 

• Random number generator to 
select 5 values from each segment. 
 

• Use GPS coordinates to co-locate 
soil sample with ECa value. 

Response Surface Sampling 
Design (20 sites) 

 

• Strategically pick sites to 
maximizes info on ECa variation 

 

• Evaluate spatial relationship to 
minimize auto-correlations 

 

• Series of iterations to find the best 
set of sampling sites 
 

• Use GPS coordinates to co-locate 

soil sample with ECa value. 
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Locating Sample Points Using GPS 

Co-locating eliminates spatial uncertainty  

Between ECa value and soil sample 



Soil property correlation matrix (n = 40) 

ln(Cl) TN TP VS 

ln(Cl) 1.000 0.898 0.924 0.913 

TN 1.000 0.985 0.987 

TP 1.000 0.978 

VS 1.000 

Soil property / EMI cross-correlation estimates (n = 40) 

ln(Cl) TN TP VS 

EMI 0.931 0.863 0.865 0.881 

ln(EMI) 0.966 0.924 0.930 0.937 

Soil property correlation matrix, 

and soil property/EMI cross-

correlation estimates.  



Objective 1:  RSSD vs. SRS 
Sampling Design Scores 

Sampling Plan Sample Design Optimality Score 

Dopt Vopt Gmax 

Response Surface Sampling Design 

(RSSD) 

1.52 ∙ 10-2 1.123 1.231 

Stratified Random Sampling (SRS) 0.22 ∙ 10-2 1.178 1.989 

• D optimality (Dopt) is a measure of the expected precision of the 

regression model parameter estimates 
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Objective 1:  RSSD vs. SRS 
Sampling Design Scores 

Sampling Plan Sample Design Optimality Score 

Dopt Vopt Gmax 

Response Surface Sampling Design 

(RSSD) 

1.52 ∙ 10-2 1.123 1.231 

Stratified Random Sampling (SRS) 0.22 ∙ 10-2 1.178 1.989 

• D optimality (Dopt) is a measure of the expected precision of the 

regression model parameter estimates 
 

• V optimality (Vopt) is a measure of the expected average prediction 

error associated with the regression model predictions 
 

• G maximum (Gmax) is a measures of the expected maximum 

prediction error of the regression model predictions. 



Objective 2: RSSD Ability to Predict 

SRS Values 

Variable Design R2 Root MSE 

ln(Cl) RSSD 0.953 0.104 1.389 (3.17) 1.650 (1.20) -0.084 (0.11) 

SRS 0.937 0.086 1.796 (4.91) 1.501 (1.84) -0.068 (0.17) 

TN/1000 RSSD 0.928 1.84 -246.7 (55.5) 88.0 (21.0) -7.29 (1.96) 

SRS 0.884 1.81 -276.0 (100.2) 97.9 (37.6) -8.12 (3.52) 

TP/1000 RSSD 0.948 0.472 -83.0 (14.3) 29.8 (5.39) -2.50 (0.50) 

SRS 0.920 0.471 -87.9 (26.1) 31.1 (9.81) -2.58 (0.92) 

VS RSSD 0.946 3.72 -528.2 (112.4) 186.9 (42.5) -15.3 (3.97) 

SRS 0.882 4.40 -500.6 (243.8) 173.0 (91.6) -13.7 (8.56) 

0 ( )se 1 ( )se 2 ( )se

Quadratic regression model summary statistics and 

parameter estimates for each sampling design. 



Objective 2: RSSD Ability to Predict 

SRS Values (cont.) 

 

Variable 

Composite F-test  

F score (P>F) 

Joint Prd F-test  

F score (P>F)  

Mean Prd t-test  

t score (P>F) 

ln(Cl) 1.98 (0.136) 0.86 (0.630)  2.14 (0.047) 

TN 0.36 (0.785) 0.87 (0.618) -0.49 (0.628) 

TP 0.97 (0.420) 0.99 (0.516) -0.72 (0.484) 

VS 0.50 (0.682) 1.28 (0.307) -0.48 (0.640) 

RSSD samples were calibration data, SRS 

samples were independent validation sites.   

• Composite F-test demonstrates parameter estimates for 

both sampling designs are equivalent. 



Objective 2: RSSD Ability to Predict 

SRS Values (cont.) 
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• Composite F-test demonstrates parameter estimates for 

both sampling designs are equivalent. 

• Joint Prd. F-test demonstrates that RSSD can accurately 

predict SRS values 



Objective 2: RSSD Ability to Predict 

SRS Values (cont.) 

 

Variable 

Composite F-test  

F score (P>F) 

Joint Prd F-test  

F score (P>F)  

Mean Prd t-test  

t score (P>F) 

ln(Cl) 1.98 (0.136) 0.86 (0.630)  2.14 (0.047) 

TN 0.36 (0.785) 0.87 (0.618) -0.49 (0.628) 

TP 0.97 (0.420) 0.99 (0.516) -0.72 (0.484) 

VS 0.50 (0.682) 1.28 (0.307) -0.48 (0.640) 

Response surface sampling design (RSSD) samples used as 

calibration data, stratified random sampling (SRS) samples 

used as independent validation sites.   

• Composite F-test demonstrates parameter estimates for 

both sampling designs are equivalent. 

• Joint Prd. F-test demonstrates that RSSD can accurately 

predict SRS values 

• Mean Prd. T-test demonstrate means were unbiased for TN, 

TP, VS 



Objective 3 & 4: Spatial Structure 

& Management Practices 
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Conclusions 

1. Three different validation tests were used to assess the 

accuracy and reliability of the RSSD fitted model.  

• RSSD was found to be as good or better than SRS. 
 

2. The excellent correlations between the PRP EMI signal data 

and the ln(Cl), TN, TP and VS soil properties.  

• Each of the four models was capable of explaining more than 90% 

of the sample variations.  

• EMI data can be effectively used to map spatially variable manure 

constituents in feedlot pens.   
 

3. Prediction maps show pen design effect on manure 

accumulation 
 

4. This technique allow the development of precision 

management practices to mitigate environmental 

contamination environment. 



Volatile Solids vs ECa

ECa, mS/m
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ECa Data with 

 GPS Coordinates 
ESAP - RSSD 

Soil Core 
VS, TN, TP, Cl,  

CO2, N20, CH4,  

VFA, Aromatics  

ECa Data 

ESAP - Calibrate 

Calculate Models 

Summary Statistics 

Prediction Equations 

Prediction Maps 

Sample Locations 

co-located w/EMI 

Spatial Feedlot Manure Accumulation 



Using EMI to Measure Treatment 

Differences (Corn vs. WDGS) 

•Each Jar represents a RSSD sampling site 

•Twelve sites per pen, four pens per treatment 

•Incubated at room temp. to measure VFA   

production following a rain event 



Cattle Fed Corn-Based Diet 



Cattle Fed WDGS-Based Diets 



 

Straight-Chained VFA
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Small Area of Pen with 

Offending Emissions 
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Precision Management for Odor Control 



Questions 



Pen Diet Acetate Straight-chain 

VFA 

Branched-chain 

VFA 

Total 

VFA 

Solids 

<65 >65 <55 >55 <7.0 >7.0 <130 >130 <30 >30 

mmol 

kg-1 

mmol 

kg-1 

mmol 

kg-1 

mmol 

kg-1 

mmol 

kg-1 

mmol 

kg-1 

mmol 

kg-1 

mmol 

kg-1 

 

% 

 

% 

217 Corn 16.4 83.6 22.1 77.9 80.0 20.0 21.2 78.8 12.9 87.1 

218 Corn 60.4 39.6 55.5 44.5 73.5 26.5 64.9 35.1 72.4 27.6 

223 Corn 21.9 78.1 29.2 70.8 52.7 47.3 26.9 73.1 14.4 85.6 

224 Corn 54.5 45.6 63.6 36.4 76 24 60.9 39.1 41.8 58.2 

Average 38.3a 61.7a 42.6a 57.4a 70.6a 29.4a 43.5a 56.5a 35.4a 64.6a 

219 WDGS 66.6 33.4 79.0 21.0 57.8 42.2 75.6 24.4 53.1 46.9 

220 WDGS 100 0 60.3 39.7 37.4 62.6 92.2 7.8 83.3 16.7 

221 WDGS 43.4 56.6 75.7 24.3 41.3 58.7 59.2 40.8 59.9 40.1 

222 WDGS 64.9 35.1 84.7 15.3 38.4 61.6 76.0 24.0 63.2 36.8 

Average 68.7a 31.3a 74.9b 25.1b 43.7b 56.3b 75.8b 24.2b 64.9a 35.1a 

P-value 0.191 0.191 0.040 0.040 0.015 0.015 0.081 0.081 0.135 0.135 

Percent surface area above or below a selected threshold level 

for each pen.  Note mean values follow by different letter were 

significantly different by diet at the p ≤ 0.1 level.  



Feedlot Management For 

Environmental Sustainability 



GPS Position 

Conductivity Data 

Data Collected at 5 pts. per sec. 

Electromagnetic Soil Conductivity 

Meter, ECa 



TX RX 

The transmitter coil (TX) is placed near the earth and is energized with an 

alternating current.  The small currents induced into the earth generate a 

secondary signal which is picked up by a receiver coil (RX) at a distance 

S away.  The ratio of the two signals gives a measure of the soil’s 

conductivity beneath the two coils. 

Electromagnetic Induction Principles 
S 



Feedlot Survey Bushland, TX 
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